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ABSTRACT 

EYE TRACKING AS A CONTROL INTERFACE FOR TELE-OPERATION DURING A 

VISUAL SEARCH TASK  

Jeffrey Neal Levy 
Old Dominion University, 2017 

Director: Dr. James Bliss  
 

 

 This study examined the utility of eye-tracking as a control method during tele-operation 

in a simulated task environment. Operators used a simulator to tele-operate a search robot using 

three different control methods: fully manual, hybrid, and eye-only. Using Endsely’s (1995a) 

three level SA model and a natural interface (e.g., eye-tracking) as a more user-centered 

approach to tele-operation, the study measured objective, electroencephalogram, and subjective 

(NASA-TLX) measures to reflect both workload and situation awareness during tele-operation. 

The results showed a significant reduction in mental workload, as reflected by EEG measures. 

However a significant effect was found where the operators’ perceived mental workload scores, 

as reflected by the TLX, significantly increased while using the natural interface. The difference 

in perceived mental workload was also mirrored by a post hoc analysis where frustration scores, 

also reflected by the TLX, supported the initial findings of the differences in perceived mental 

workload scores between the three conditions. The results of this study can be explained by both 

incomplete mental models of motor movements and differences in affordances offered by the 

different control conditions. Additional considerations for system designers and future research 

are also discussed.  
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CHAPTER 1 

INTRODUCTION 

 In the past few decades the popularity of complex technology has burgeoned in society 

(LaViola Jr., 2014; Miller & Parasuraman, 2003). Engineering psychologists have investigated 

potential costs (e.g., long reaction time, high task demand, and high intrusiveness) and 

limitations (e.g., subjective measures, low diagnosticity, high automation bias) of utilizing the 

many types of technology (Durso et al., 2010; Miller & Parasuraman, 2003; Muir, 1987; 

Parasuraman et al., 2000; Sheridan & Verplank, 1978; Sorkin & Woods, 1985; Wickens et al., 

2013). There has been much research focused on understanding automation use as well as their 

effects on task operators (Endsely, 1995; Prewett et al., 2010; Wickens, 2002). Although 

complex system use presents many important considerations, two of the most critical operator 

constructs are workload and situation awareness, both potentially detrimental to operators’ 

performances if not properly managed (Brooking et al., 1996; Endsley, 1995a; Jones & Endsley, 

1996; Prewett et al., 2010; Wickens, 2002).  

In an effort to reduce the risk of personnel injuries, teleoperation of unmanned vehicles 

has been increasing in popularity in many respected communities (Miller & Parasuraman, 2003; 

Mouloua et al., 2001). With the increase in use of unmanned vehicles researchers must 

investigate not only variations of SA and workload, but physical dislocation of operators. The 

popularity of teleoperation emphasizes the importance of interface design (e.g. visual displays 

and inputs and outputs), where the dynamic relationship between system and operator hinges 

upon the display of data as well as its interpretation (Van Erp, 1999). As discussed by 

Parasuraman and colleagues (2000), the decision to use automated systems may have both 

benefits and costs. Benefits may include a reduction in attentional resource demand, whereas 
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costs may include the reduction of the operator’s situation awareness (Kaber et al., 1999; 

Parasuraman et al., 2000). 

As engineering psychologists acknowledge the need for operators to be efficient and 

effective, there are many changes to be considered if system designers want to achieve these 

goals (Boucsein, 2000). This study uses Boucsein’s (2000) definition to define efficiency and 

effectiveness. Effectiveness is defined as “the quality of performance” and efficiency to describe 

“the relationship between the quality of performance and the effort invested in the completion of 

the task” (Boucsein, 2000). One consideration would include re-evaluating the design of existing 

systems to reduce task demands and prevent operators from having to learn about new 

technology and techniques. System designers make decisions on the basis of expected inputs, 

system commands, outputs, and system feedback. Historically, system designs have followed a 

technology-driven approach, where functions are implemented and the operator is asked to adapt 

(Oviatt, 2006). At times this may be appropriate because of its simplicity.  However, it often 

leaves out the capabilities and limitations of the task operator.  One increasingly popular 

technological tool is eye tracking.  Eye-tracking technology has not only become a critical tool in 

data collection but also allows researchers to take a more user-centered approach to facilitate the 

interaction between operator and system (Poole & Ball, 2006; Smith et al., 2015). 

Of prime importance to designers is the effective management of operators’ mental 

resources so that there is sufficient memory and attention to interact with the task, the automated 

system, and the task environment (Oviatt, 2006; Parasuraman et al., 2000; Wickens, 2002). The 

proposed study reflects a collective definition of mental resources as information processing 

capacity that is expended during task performance (Van Merrienboer et al., 2005). Automation 

includes devices or systems that accomplish a function that was previously, or conceivably could 
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be, carried out by a human (Parasuraman & Riley, 1997; Parasuraman et al., 2000; Warm et al., 

2008).  

Because of the potential for automated system control to degrade cognition, the proposed 

investigation evaluates the non-applicableness of Multiple Resource Theory (MRT), a 

performance theory often used by system designers to guide the exchange of information and 

interactions between complex systems and operators, and leverages both a user-centered 

approach and Situation Awareness (SA) as a guiding framework to enable the evaluation of three 

different control methods for tele-operation: fully manual, hybrid, and eyes-only (Endsley, 

1995a; Oviatt, 2006; Wickens, 2002). The planned manipulation of control method as an 

independent variable will feature the possibility of eye-tracking technology to assist operators in 

the tele-operation of a robotic vehicle during a visual search task. The experiment will 

investigate changes in physiological data, performance data, and subjective mental workload and 

situation awareness that may occur given the manipulation of command input modality.  An 

important aspect of the experimental manipulation is the inclusion of a natural interface 

condition that features an eye tracker (Endsley 1995; Prewett et al., 2010; Smith et al., 2015; 

Wickens, 2002). The goal of this study was to record objective, EEG, and subjective measures to 

investigate the impact of using eye-tracking technology during tele-operation, and what changes 

cognitive may occur as a result of using a natural interface, such as an eye-tracker (Brünken et 

al., 2003; Parasuraman et al., 2000; Oviatt, 2006).  

Taking a human-centered approach to designing a system for the tele-operation of an 

Unmanned Ground Vehicle (UGV) includes identifying task demands that impose any 

Extraneous Cognitive Load (ECL) on the operator. In this study, extraneous cognitive load is 

defined as any attentional resource demand imposed upon an operator as a result of the 
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formatting of the inputs, commands, and outputs, system feedback, of a system (Brünken et al., 

2003). More specifically, previous research characterized ECL as workload imposed on an 

operator during the operation of a system (e.g., manipulating two joystick during tele-operation 

or turning a steering wheel while pressing a car’s gas pedal), but does not contribute to the 

understanding of environment, or stimuli (Brünken et al., 2003). For example, a person tele-

operating a UGV with two joysticks has two essential goals: 1) manipulate vehicular and camera 

control of the UGV and 2) successfully navigate through an environment to complete a task. The 

task demands of tele-operation determine the amount of ECL imposed onto the operator. The 

task demands to tele-operate a UGV may actually detract from the operator’s knowledge about 

the task environment.   Such demands draw limited attentional resources from the operator’s 

working memory (Brünken et al., 2003; Endsley, 1995; Wickens, 2002).  

Proper management of ECL would increase available attentional resources to maintain 

situation awareness or complete a task (Endsley. 1995; Oviatt, 2006; Wickens, 2002). Judicious 

management of ECL imposed upon tele-operators would require evaluating the task demands of 

the tele-operating system and considering alternative approaches such as natural interfaces.  
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CHAPTER 2 

BACKGROUND OF THE STUDY 

Natural Interfaces 

In an effort to focus attention on critical concerns regarding tele-operation, researchers 

have advocated the use of natural interfaces (Mouloua et al., 2001; Stone, 1991). Natural 

interfaces are systems designed to interpret naturalistic behavior, or movements (e.g., hand 

gesture movements, voice commands, and eye movements), as input commands to operate a 

specific function. Such interfaces promote learnability, speed, and reduction of motor 

movements (Jacob, 1990; Wachs et al., 2011, Stone, 1991). It seems that many of the suggested 

benefits are dependent upon the natural movements emulated by the system; natural interfaces 

should be easier to operate because they require behavior patterns that have been previously 

learned (Wachs et al., 2011). The use of eye-tracking technology is a particularly relevant 

example (Jacob, 1993).  

Dünser and colleagues (2015) compared the use of eye tracking with the use of traditional 

tele-operation techniques (e.g., two joysticks or mice) during a Fitts test. A test that was designed 

to predict the movement time between two points based on the distance to be traveled, size of the 

target, and features of the motor system for movement (Fitts, 1954). They noted a distinct speed 

advantage that eye movement has over traditional arm and hand movement, perhaps because of 

rapid saccade movements. However, Dünser and colleagues reported that the two eye-tracking 

interfaces were slower than the other manual traditional methods (e.g., mouse and touchscreen) 

because they required more learning by participants.  Notably, using the NASA Task Load Index 

(TLX), the eye-tracking methods were rated as imposing significantly less perceived workload 

than the manual methods (Dünser et al., 2015). 
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In a similar study, Smith and colleagues (2015) compared the use of eye-tracking 

technology against keyboard use for a task that required participants to switch monitor controls 

in a simulated surveillance system. The authors reported that eye tracking was significantly faster 

than keyboard switching. However, Smith and Colleagues (2015) also reported eye-tracking as 

greater in perceived workload ratings.  

Multiple Resource Theory 

The ECL workload benefit supports using a natural interface as an input technique for 

tele-robotics (Oviatt, 2006; Stone, 1991). Contrary to suggestions that Multiple Resource Theory 

(MRT) may be used as theoretical framework to support system design changes, it is identified 

that the current MRT is not fit to support the system design used in this study (Dünser et al., 

2015; Oviatt, 2006; Smith et al 2015). Multiple Resource Theory is a performance theory that 

characterizes attentional resource allocation; and has been used by some system designers to 

manage attentional resource demands imposed upon operators for multitasking environments 

(Oviatt, 2006; Wickens, 2002). MRT predicts operator performance based upon the distribution 

of cognitive resources among independent attentional reservoirs. The general consensus being 

that the more a task, system, or environment requires an operator to simultaneously use cognitive 

resources within the same reservoir interference is generated that generally yields poorer 

performance (Wickens, 2002). Ideally if MRT were applied to tele-operation, it would be used to 

evaluate task demands of a tele-operating system and support designs that would reduce the 

amount of interference between resource reservoirs. One distinct advantage of using MRT as a 

framework for system design is the potential to design a system that accommodates cross-modal 

time-sharing of attentional resources (Wickens, 2002). Time-sharing is defined as the allocation 

of attentional resources among the multiple resource pools as described in MRT (Wickens, 
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2002). Wickens (2002) emphasizes that even if a system is designed to accommodate cross-

modal inputs, operators may still experience perceptual interference, see Figure 1 (Wickens, 

2002).   

 

 

Figure 1. A 3-D model representation of multiple resources as described in Wickens 

(2002). 

 

Applying MRT (2002) to the current study reveals a critical limitation in the model. As 

proposed by Wickens, MRT describes the visual system as a collector of perceptual information 

and does not address the visual system as the initiator of a manual response, as used in this study 

using eye-tracking (Wickens, 2002). Consequently, MRT does not predict the impact of ocular 

motor responses on sensory or motor cognitive resource pools (Wickens, 2002). Because of this 

limitation, an alternative framework must be identified. Possible candidates include theories of 

mental workload or frameworks to explain the development and enhancement of situation 

awareness, such as the model offered in Figure 2 (Brünken et al., 2003; Endsley 1988a/95a; 

Parasurman et al., 2000). The cognitive model proposed in Ensley (1988a), Figure 2, would be a 
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more appropriate model to support the system design change used in this study and as framework 

for designers in the future. The model follows an information processing approach towards 

Situation Awareness (SA) and provides guidance towards how cognitive resources are held and 

allocated (Endsley, 1988a). This study utilizes this model as framework.   

 

 

 Figure 2. Mechanisms of situation awareness (Endsley, 1988a). 

 

Eye-Tracking and Automation Use 

 Parasuraman and colleagues (2000) recommended that a decision to use automation must 

be accompanied by its likely effects on the operator, such as changes in mental workload and 

situation awareness.  Jacob (1990) suggests that the use of eye-tracking technology is no 

exception to such influences. Jacob (1990) identified a potential cost of eye-tracking technology 

is as the “Midas Touch.” The Midas Touch is described as a result of using eye tracking to 

command a system inadvertently activating functions, or inputs, on an interface that were not 

meant to be activated (Jacob, 1990). An example of this would be an operator trying to move a 
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mouse curser across an interface but inadvertently selecting undesired icons. Jacob (1990) 

explains that the Midas Touch may have a negative impact upon an operator’s frustration and/or 

stress.  

The Midas Touch could occur in this study in the this study. There was a possibility that 

the operators may be influenced by the design of control methods for tele-operation. In this 

study, eye-tracking was used as a method of cameral control, and as an object selection method. 

During the use of eye-tracking for camera control the Midas Touch could have occurred if the 

tele-operator is trying to visually inspect a stimulus in the simulated environment and the camera 

moves without the intention of the operator. This occurrence of the Midas Touch during camera 

control may have been distracting.  

The Midas Touch may have also occur during the selection method. To control for this, 

the eye-tracking technology was designed to measure fixation periods across the interface. When 

the system recognizes that the tele-operator has a fixation across a set of pre-programmed pixels 

the progression of a “selection circle” begins (see Figure 2). If the tele-operator does not 

maintain a fixed focus on the pre-programmed pixels, the progression of the circle will disappear 

and reset. However, if the tele-operator’s intention was to simply inspect a stimulus in the 

simulated environment then the progression of the selection circle may begin without the 

intention of the tele-operator and could interfere with the intended visual inspection. 
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.  

Figure 3. Visual feedback given to the tele-operator in eye-tracking conditions during target 
selection. The feedback signifies that the current visual fixation point is in the process of being 
selected. When a completed circle is presented the tele-operator responds with a nod of the head 
to acknowledge the selection of the intended target.  
 
 

 The particular design of the eye-tracking interface was designed to facilitate a continuous 

stream of visual information.  Such a stream occurs naturally when humans move their eyes and 

heads to focus on visual targets. Unlike traditional methods of tele-operation, the operator may 

refocus attention smoothly and seamlessly to build awareness.  No joysticks or manual controls 

are necessary for shifting the viewpoint, and no associated loss of information should occur.    

Ultimately, the smoothness of an eye-controlled camera should constitute a more user-

centered design than the traditional tele-operation design (Oviatt, 2006). The design used not 

only allowed the operator to search the environment freely without the interruption of joystick 

manipulation for camera panning, but it also allowed information to pass directly across the 

fovea to be immediately evaluated for acquisition.  

Subjective Mental Workload 

 One of the goals of this study was to reduce the amount of perceived mental workload of 

the operator. Mental workload is defined as the total amount of information processing 

demanded by a task (Eggemeier, 1988; Warm et al., 2008). Oviatt (2006) and Parasurman and 
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colleagues (2000) point out that a system’s design may be able to accommodate the information 

processing demands of a task by designing the system interaction to accommodate the operator 

rather than the traditional technology driven approach. In the study, measuring perceived 

workload during tele-operation was expected to provide further support for modality dependent 

resource demand.  In an effort to measure changes in perceived mental workload the present 

study used the two workload measures described below. 

 Subjective Mental Workload Measure: NASA-Task Load indeX  

Of the various techniques used to measure cognitive workload, the most widely accepted 

is the TLX (De Winter, 2014). The TLX was developed by Hart and Staveland in 1988 and 

measures the mental workload of a task across six dimensions: mental demand, physical demand, 

temporal demand, performance, effort, and frustration (Hart & Staveland, 1988; Rubio et al., 

2004). The TLX reflects the idea of workload and performance being dependent upon the 

allocation of attention, which makes it a popular method for assessing workload in multitask 

environments (Hart & Staveland, 1988; Rubio et al., 2004).  

In a study by Rubio et al. (2004) the TLX was compared with the Subjective Workload 

Assessment Technique (Reid & Nygren, 1988) and the Workload Profile (Tsang & Velazquez, 

1996) to see how well each met suitability requirements to evaluate mental workload as 

suggested by Eggemeier and Wilson (1991).  These requirements include sensitivity, 

diagnosticity, selectivity/validity, intrusiveness, reliability, implementation requirements, and 

subject acceptability. Rubio and colleagues (2004) reported that the TLX was the most useful 

and sensitive subjective measure used in the comparison (Rubio et al., 2004). Similarly, Dünser 

et al., (2015) and Smith et al., (2015) used the TLX to evaluate changes in workload during eye-

tracked control. In both studies the task demands of a complex system relying heavily on motor 



www.manaraa.com

12 
 

movements (e.g., arms, hands, and fingers) were compared against a system that relied only on 

the motor movements of the visual system (e.g., eye movements). In both studies, the system 

utilizing eye-tracking technology required less mental workload (Dünser et al., 2015; Smith et 

al., 2015). Importantly, the findings from both studies showed that the TLX can detect a 

significant reduction in workload from the use of eye-tracking technology.  

Convergent validity for the use of the TLX has been demonstrated by its correlation with 

physiological measures (e.g., eye-blink, heart rate, and EEG). An electroencephalogram is a 

physiological monitoring device that monitors, and records, electrical activity in brain (e.g., 

multiple brainwave patterns) (Antonenko et al., 2010; Gevins & Smith, 2006; Parasuraman et al., 

2000). Brookings and colleagues (1996) used the TLX concurrently with an EEG to evaluate 

workload in a simulated Air Traffic Control (ATC) environment.  They found that the TLX was 

sensitive enough to detect changes in workload for each level of difficulty during the ATC task 

(Brookings et al., 1996) and that the TLX correlated with the level of activation in an EEG theta 

power band (brain wave of 4-8 Hz) . EEG theta wave activity is considered to have a positive 

relationship with workload, and the alpha wave activity (brain wave of 8-16 Hz) has a negative 

relationship with workload (Antonenko et al., 2010; Gevins & Smith, 2006; Parasuraman et al., 

2000). 

Much research has used the NASA-TLX to measure workload; yet, it remains a self-

report method that relies on the operators’ opinions (Rubio et al., 2004; Winter, 2014).  As such, 

it should be used and interpreted with caution (Stanton et al., 2013). In this study, EEG was used 

in conjunction the TLX to assess workload. 
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Physiological Measure: EEG 

 Byrne and Parasuraman (1996) identified psychophysiological measures as important for 

assessing the influence of automation upon the intended operator (Byrne & Parasuraman, 1996). 

As described by Parasuraman and colleges (2000), understanding how automation can be 

implemented and how its implementation can affect the operator is an essential consideration 

(Parasuraman et al., 2000). Studies using similar methods of measuring workload as this study 

have consistently reported a negative  relationship between both the alpha and theta EEG bands 

(1-8 Hz) and subjective workload (Aricò et al., 2015; Brookings et al., 1996; Gevins & Smith, 

2006). Additionally, in a seminal literature review, analyzing the use of continuous EEG use, 

Antonenko and colleagues (2010) suggested that the alpha band demonstrates a desynchronizing 

pattern as task difficulty increases and the theta band demonstrates a synchronizing pattern that 

increases concurrently with task difficulty (Antoneko et al., 2010).  

Situation Awareness 

As mentioned by Parasuraman and colleagues (2000), considering the effects of 

automation use is critical when designing a complex system. Technological influences on 

Situation Awareness (SA) is central to Endsley’s research (Endsley, 1995a). Endsley (1988) 

defines SA as “The perception of the elements in the environment within a volume of time and 

space, the comprehension of their meaning, and the projection of their status in the near future.” 

Endsley (1995a) proposed a three-level model of SA based on an information-processing 

approach (See Figure 3; Salmon et al., 2008). 
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Figure 4. A three-level model of situation awareness (Endsley, 1995a). 

 

In her (1995a) study Endsley described SA as a process that occurs after perception and 

that is independent from other cognitive constructs such as workload and situation assessment. 

She also presents the three levels of SA hierarchically (Endsley, 1995a; Salmon, 2008). Her 

claim of level dependence coincides with how information is collected from the environment by 

sensory systems, then continuously processed for recognition and meaning (see Figure 3).  

In the first level of SA, an operator perceives relevant stimuli (e.g., status of gauges, 

auditory and visual alarms, status of a system) within the dynamic working environment. The 

operator identifies relevant stimuli that do or may contribute to the understanding of an 

environment or as information needed towards the completion of a goal (Endsley, 1995a; Salmon 

et al., 2008). In this study, such elements could consist of information and objects presented on 

the interface of the simulator (e.g., characteristics of targets and non-targets, system status, and 

https://upload.wikimedia.org/wikipedia/commons/8/8d/Endsley-SA-model.svg
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visual cues) as well as spatial information and the status of control interactions.  Though an error 

in this first level of SA may be harmful for the successful completion of a task goal, additional 

top-down factors such as experience may help the operator avoid errors (Endsley, 1995a).  

Endsley (1995a) characterizes the second level of SA as consisting of the synthesis of the 

elements from the first level of SA and the recognitions or assumptions, that result in the 

interpretation of such elements and how they relate to their mental model or goal. Though 

novices and experts may both be successful in identifying relevant elements in a working 

environment, they may differ in their synthesis of those elements (Endsley, 1995a). For example, 

a novice may be able to identify a selection of relevant elements, but may not have the 

knowledge or training to build a mental model from the information obtained (Endsley, 1995a). 

An error in this level of SA was also described by Jones and Endsley (1996).  

In this study, examples of the second level of SA would consist of operators properly 

interpreting visual cues for navigation and target discrimination.  

The third level of SA that was identified by Endsley (1995a) was the projection of future 

status. It is in this level that the understanding of Level one and Level two information is utilized 

to predict the future status of stimuli within a dynamic environment (Endsley, 1995a). For 

example, while stopped at a 4-way stop a driver may notice an oncoming car from their right. 

The operator may then have to decide when to proceed through the intersection. The operator 

may already be processing Level 1 and 2 SA and may have an incomplete projection of Level 3 

SA information. As the approaching vehicle comes closer to the operator’s vehicle more 

information can be obtained, providing accurately detailed information regarding any potential 

threats of collision if the operator decides to proceed.  
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Because tele-operation relies on the perception of information presented within an 

interface, SA is a critical component to consider. During tele-operation operators must rely on 

data obtained through interface features (e.g., camera zoom and graphical overlays) that may 

influence the operator’s performance (Van Erp, 1999). As suggested by Endsley (1995a) and 

Salmon et al. (2006), additional factors such as experience and design elements may 

accommodate good performance even if an operator has limited SA. Likewise, factors such as 

workload may lead an operator to have poor performance while having good SA (Endsley, 

1995a). It is important for researchers to study SA in different task domains and evaluate how 

system design can affect SA.  

In addition to Endsley’s proposed three level model of SA (1995a), researchers have 

proposed alternative models to describe SA (Bedny & Meister, 1999; Salmon, 2008; Smith & 

Hancock, 1995). Bedny and Meister (1999) proposed using theory of activity for modeling 

situation awareness (See figure 4; Salmon et al., 2008). Bedny and Meister describe SA as being 

part of a complex cognitive process that has three core components: a person’s conceptual 

model, the person’s image goal, and the person’s subjectively relevant task and conditions 

(Bedny & Meister, 1999; Salmon et al., 2008). Bedny and Meister propose that SA is a 

component used during interaction with an environment. Interactions occur when an operator has 

an ideal goal to achieve, evaluates their current situation, and then evaluates possible interactions 

that may lead the operator to achieve that goal (Salmon et al., 2008).  
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Figure 5. Using theory of activity to describe situation awareness with the core components: (8) 

Conceptual model, (2) Image goal, and (3) Subjectivity relevant tasks & conditions (Bedny and 

Meister, 1999). 

 

Smith and Hancock (1995) use an ecological approach to describe SA based on the 

perceptual cycle (See Figure 5). SA is described by Smith and Hancock as both a product and an 

internal process (Salmon et al., 2008). Smith and Hancock’s (1995) description of SA reflects an 

operator having existing goal-relevant knowledge that is continuously expanded and modified 

through interactions with the environment.  

When comparing the models previously mentioned to describe SA a common theme of 

agreement is that SA is essential for successfully completing a task and should be considered in 

performance criteria. Moreover although both SA models: Smith and Hancock (1995) and Bedny 

and Meister (1999) may be relative towards the definition of SA, when applied to the current 
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study neither were found as fit to guide both the measurement and interpretation of SA as 

Endsley’s (1995a/1995b) three level model. Endsley provides both clear descriptions of the parts 

of SA and detailed accounts, and interpretations, of measuring each level of SA (Endsley’s 

(1995a/1995b). 

 

 

Figure 6. The perceptual cycle model of situation awareness (Smith & Hancock, 1995).  

 

Measuring SA  

Though many measurement strategies are offered by Endsley (1995b), most are either 

subjective and rely on operators’ recall.  Examples include the Situation Awareness Global 

Assessment Technique (SAGAT) and the Situation Awareness Rating Technique (SART) (Durso 

& Sethumadhavan, 2008). In this study, SA was measured using performance scores as an 
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indirect measure of SA. A limitation to the consideration of SA as an internal cognitive process 

is the limited ability to measure an abstract concept.  

Though Endsley (1995b) reports that certain subjective measurements strongly correlate 

with performance, Andre and colleagues (1991) consider SA as an ambiguous construct. Andre 

and colleagues (1991) promoted using performance scores to assess SA.  The use of performance 

based measures is also supported by Endsley (1995b), though she cautions about their 

interpretation. Specifically, Endsley highlights the importance of considering the particular level 

of SA where errors occur during the interpretation of a performance based SA measure. This was 

especially pertinent to this study. Though Endsley’s SA model is appropriate as a framework to 

support the advantages of hybrid control, the benefits observed are likely limited to SA Levels 1 

and 2. Also, the interpretation of performance-based measures for SA may suffer from errors of 

diagnosticity (e.g., the performance score may be measuring only one level of SA, or measuring 

one level may influence the validity of the others). However, as suggested by Salmon and 

colleagues (2006), using performance measures to assess SA represents a more naturalistic, non-

intrusive measurement method that utilizes real-world tasks. Ultimately, though performance 

measures provide a global measure of SA, they are still more objective than a questionnaire 

(Endsley, (1995b).  

Given the nature of the visual search task in this study operators with good SA will likely 

identify more targets than operators with poorer SA. Additionally the decision to use a 

performance measure to assess SA in this study was justified because of the method’s non-

intrusiveness and the facilitation of the physiological measures, EEG, being recorded.  

Purpose 
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The purpose of this research was to investigate the use of eye-tracking technology as a 

control method for the tele-operation of an unmanned ground vehicle during a visual search task. 

It is important to determine whether tele-operators perform more effectively using a natural 

interface than a conventional interface that is mediated by a physical controller. Because of this 

there were three conditions in this study that were defined, administered, and monitored: manual 

control, hybrid control, and hands-free control. This study evaluated not only performance 

scores, but cognitive effects (e.g., changes in workload and situation awareness) that may, or 

may not, occur as a result of using a natural interface.  

Previous research examining eye-tracking technology as an independent variable has 

included examining eye-tracking as a tool to execute a specific function (e.g., a speller, Fitt’s 

test, task switching). However there seems to be a gap in the literature where eye-tracking is used 

as a continuous motor control method, such as camera panning or driving, as used in this study. 
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CHAPTER 3 

HYPOTHESES 

H1: There will be a significant difference in perceived mental workload among the three 

experimental conditions, as reflected by the TLX subscale. More specifically, it is predicted that 

the hybrid (combination of manual tracking and eye tracking) control method will result in 

significantly lower perceived cognitive workload than the other two conditions.  

Previous research comparing the use of eye-tracking technology against conventional 

manual control methods has reported lower levels of perceived cognitive workload by their 

participants (Dünser et al., 2015; Smith et al., 2015). These findings of reduced perceived 

workload are expected by using eye-tracking technology to manage the allocation of attentional 

resources and to reducing task demand imposed upon the operator (Oviatt, 2006). 

H2: There will be a significant difference in EEG theta band averages across the three control 

conditions. More specifically, average EEG theta band energy readings in the hybrid condition 

will be significantly lower than similar readings for the other eye tracking and manual control 

conditions.  

Theta wave activity has been consistently reported to increase as task difficulty and 

mental workload increase (Antoneko et al., 2010; Aricò et al., 2015; Gevins & Smith, 2003). 

Researchers have also reported that using eye-tracking as an input method has reduced perceived 

mental workload (Dünser et al., 2015; Smith et al., 2015). In the current study the reported 

positive relationship between theta wave activity and self-reported mental workload is expected.   

H3: There will be a significant difference in EEG alpha band among the three control conditions. 

Specifically, it is predicted that the EEG alpha band average in the hybrid condition will be 

significantly higher than the alpha band average for the other two conditions.  
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Previous research has reported an increase in alpha wave activity as mental workload 

decreases (Brookings, 1996). Research has suggested that utilizing a system that is user-centered, 

rather than technology driven would result in a reduction in the use of attention resources 

(Oviatt, 2006). Such a reduction in workload should be observed by examining the EEG data 

(Antoneko et al., 2010; Gevins & Smith, 2003).    

H4: Participants will identify more targets in the hybrid control condition than the other two 

conditions. Previous researchers have examined the use, or design, of automation and reported 

the potential benefits of reducing an operator’s workload and increasing their SA with the 

common goal of increasing task performance (Endsley, 1995a; Parasuraman et al., 2000; Oviatt, 

2006).  

H5: There will be a positive correlation between perceived cognitive workload scores, reported 

by the TLX, and average theta wave activity.  

In previous studies by Aricò et al. (2015) and Brookings et al. (1996) TLX and EEG 

workload measures detected similar changes in perceived workload and task difficulty. This 

relationship is expected to be present in the proposed study, where the rank order of the 

perceived cognitive workload, measured by the TLX is expected to be mirrored by the average 

EEG theta wave activity (Gevins & Smith, 2006).   
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CHAPTER 4 

METHOD 

Design  

This study utilized a one-way, within-subjects design. The independent variable, 

unmanned vehicle control method, was manipulated across three conditions:  

1) Manual. This control method required participants to utilize two joysticks concurrently: one 

for vehicle directional control and velocity and one to control the vertical and horizontal angle 

movement of the camera. 

2) Hybrid. This control method was similar to manual except for the camera control. For camera 

control eye tracking was used.  

3) Hands-Free. This control method required participants to use eye tracking for both tasks: 

vehicular movement and camera movement.  

      The order in which participants experienced each control method was counterbalanced to 

prevent any possible carryover effects. The decision to counterbalance, or use a crossover design, 

was to both control for any main effect of order and to increase the internal validity of any 

findings (Maxwell & Delaney, 2004). The tasks in this experiment required participants to 

navigate through a simulated environment and detect targets using each of the control methods 

during the three testing sessions. The manipulation of control method as a within-subjects factor 

was chosen to control for individual differences among participants, thus reducing error and 

increasing statistical power (Maxwell & Delaney, 2004). 

 To effectively evaluate the effects of using each control method during tele-operation the 

dependent measures in this study consisted of: 1) A subjective mental workload measure, the 

NASA-Task Load Index (Hart & Staveland, 1988), 2) an objective measure of mental workload, 
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the averages of both alpha and theta power bands during tele-teleoperation within each 

experimental session (Antonenko et al., 2010), and 3) an indirect performance measure of global 

situation awareness dependent upon the total number of targets identified by the operator during 

each experimental session (Endsley, 1995b).  

Apparatus/Materials 

Simulator Setup. Using a driving simulator, participants viewed a virtual environment 

on a high-resolution (1280X1024) computer monitor. The simulator included two joysticks and 

three eye-tracking cameras, one mounted on the top of the monitor and two at the bottom. Each 

camera was calibrated using Smart-eye’s calibration program, accuracy reported by Smart-eye 

as: Rotation .5 degrees, translation < 1 mm, and a gaze vector of .5 degrees, which calculated the 

variances between the three cameras to increase the accuracy of the eye-trackers. A visual 

descriptive and detailed account of the simulator’s physical properties can be found in Appendix 

A. 

EEG Extraction Technique 

 The data extraction technique was a replication of the method used by Barry and 

colleagues (2007). A 16-channel EEG with an adjustable full cap, wet electrodes, and the 10-20 

international electrode placement was utilized to collect EEG data in this study. Barry and 

colleagues (2007) collected data from 19 sites (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, 

T5, P3, Pz P4, T6, O1, O2).  For the current study, the experimenter worked with Old Dominion 

Universities’ Biomedical department to condense the site locations to 16 sites (FPz, F7, F3, Fz, 

F4, F8, T7, C3, Cz, C4, T8, P3, Pz, P4, O1, O2) to maintain the reliability achieved by Barry et 

al. (2007). The resulting system collects more reliable data than low-cost EEG headsets 

(Duvinage et al., 2013). The EEG data were time-synced within each experimental session. The 
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signals were amplified (EEG X 20,000, EOG X 5000) with a bandpass of 0-30 Hz and sampled 

by a 16 bit A/D converter at a rate of 512 samples collected per second. The data window for 

continuous collection consisted of 2-second epochs and had power bands of each wave of 

interest averaged across each epoch to obtain the average load for each condition (Antonenko et 

al., 2010; Barry et al. 2007). To execute bandwidth filtering a Butterworth filter was utilized to 

modify the frequencies of interest for latter artifact removal. Data artifact removal was controlled 

by reviewing the recorded experimental sessions and identifying actions that would most likely 

cause an artifact (e.g, selection methods of nodding the head and trigger pulls). Once an action 

caused artifact was identified the data occurring more than 1 second prior to and after the artifact 

was removed. All epochs containing artifacts (e.g., eye-blinks, head and arm movements) were 

removed prior to analysis. The power bands to be monitored during data collection were both 

theta (4-7 Hz.) and alpha (8-13Hz.) (Antonenko et al., 2010; Barry et al. 2007). The data 

collected were averaged across each experimental session to evaluate the impact of the control 

methods.  

NASA-Task Load Index 

 The TLX measures the workload of a task across six dimensions: mental demand, 

physical demand, temporal demand, performance, effort, and frustration (Hart & Staveland, 

1988). The mental demand subscale was the primary subjective measure of interest in the current 

study. In a comparison study the TLX was reported as having high convergent validity with a 

Pearson correlation coefficient of r =.9817 with the SWAT, and a r = .9863 with the Workload 

Profile (Rubio et al., 2004). Rubio and colleagues (2004) also reported the TLX as having higher 

concurrent validity with a correlation of r =.751 with the performance measures used than the 

other workload measures used. Moreover the TLX was found to have high sensitivity, being able 
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to discriminate between single and dual tasks. Matthews and colleagues (2015) investigated the 

psychometric properties of the TLX and physiological measures using a sample size of 150 

participants. They reported that the TLX had high sensitivity, diagnosticity, and internal 

consistency (Cronbach’s Alpha of r=.825). In the current study a computer was used to 

administer the TLX. Hart and Staveland (1988) reported that the results of computer 

administration are sufficiently related to those from paper and pencil administration (r =.94) (See 

Appendix B).  

Performance Measures 

 In an effort to measure the global SA of each operator during tele-operation a 

performance score was recorded. The performance score consisted of the total number of targets 

identified which using each control method (See Figure 7). The total number of targets in each 

session was 14, and the total number of non-targets in each scenario was about 100 (See Figures 

7 & 8). In each experimental session there were designated locations for each targets and non-

targets, so all participants were tested on the same scenarios for each of the three control 

methods. However, each control method’s scenario was different with regard to target/non-target 

placement and navigation path (See Figures 9 & 10). 

In addition to the total number of targets identified, the total time spent to complete each 

experimental session was recorded. Hicks and colleagues (2015) reported that the average 

completion time for this specific simulation was about 15 minutes per scenario. Each recorded 

time series began when the operator demonstrated interaction with the interface (e.g., searching 

the simulated environment or navigating the UGV).  
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Figure 7. Picture of a non-target in the simulated environment (Hicks et al., 2015). 

 

 

 

 

 

 

  

 

 

Figure 8. Picture of a target in the simulated environment (Hicks et al., 2015).  
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Figure 9. Picture of required navigation path in simulated environment (Hicks et al., 2015).  

 

Simulated Environment and Tasks 

 The setting for the simulated environment was an industrial area (See Figures 9 & 10). 

This environmental setting was chosen to present the participant with a non-hostile environment.  

The simulated environment allowed for the participant to interpret a believable real-world 

environment and to understand his or her role as a tele-operator.  
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Figure 10. Picture of simulated environment (Hicks et al., 2015).  

 

 There were two tasks to be performed throughout each testing session. Participants were 

to tele-operate the simulated UGV through each scenario using the given navigation path, a 

simulated oil pattern on the ground (See Figure 8). Operators were required to actively search the 

simulated environment, identifying and labeling each target (See Figure 7). 

Procedure 

Upon arrival at the testing location, participants were asked to complete the Informed 

Consent Form (Appendix C) and the Demographics Form (Appendix D). Participants then 

received experimental instructions, which were also read aloud by the researcher (Appendix E). 

To prevent operators from committing the Midas Touch during target selection a two-second 

fixation period was used, where the progression circle selection began after the fixation period 

had elapsed. 

Following the task instructions, participants were fitted for an EEG cap. Once the 

researcher confirmed the participant was adequately connected to the EEG system the first 
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method of control was identified and the participant’s practice session began. Each participant 

completed three brief practice sessions to learn each control method and the features in the 

simulated environment. During the practice sessions operators not only became familiar with the 

different control selection methods but also saw the simulated non-damaged industrial barrels 

(non-targets) and the damaged industrial barrels (targets). They were also exposed to the 

simulated navigation path. The order of practice sessions and test sessions continued in the same 

manner for all three control methods. For example, if the intended control method was fully 

manual then the operator practiced using the fully manual control method. After the participant 

verbally reported to the experimenter that he or she was comfortable with the control method the 

experimental session began. 

Once the experimental session was completed the participant was asked to complete a 

computer-based version of the NASA-TLX (Appendix B).  The participants were then asked to 

relax and stretch for five minutes. Following this short break the experimenter identified the next 

control method. A second practice session began, followed by the second experimental session. 

This process was continued until each participant completed an experimental session using each 

control method.  During all practice sessions the simulated environment was identical (e.g., 

navigation pattern and target location). The only thing different during the practice sessions was 

the method control for tele-operation. However, each of the three experimental sessions were 

different in terms of method of control for tele-operation, location of non-targets and targets, and 

designated navigation path. For each control method there was a specific simulated environment 

to ensure that all participants were tested with the same control methods and in the same test 

environment.  Upon completion of all three experimental sessions the participants were thanked, 
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debriefed and awarded two credits for their participation. Each session lasted approximately 2 

hours. 

Participants 

Twenty participants were initially recruited for this experiment through Old Dominion 

University’s SONA system. The SONA system allowed students who are enrolled in a 

psychology course to participate in campus experiments in exchange for course credit (see 

Appendix F). Data from two of the twenty participants could not be utilized due to data 

collection errors. The first error was a result of the reference electrode not being properly placed, 

which resulted in unreliable data to be collected. The second error was an equipment malfunction 

where data was not collected by the EEG system. Because of this only 18 participants’ data (N = 

18, age M=24.33) were analyzed: male (n = 7, age M= 25.71) and female (n = 11, age M= 

23.45). 

The participants for this study were expected to represent an equal number of male and 

female students between the ages of 18 and 30. The only criterion for students to participate in 

this study was that the student must have had normal or corrected-to-normal vision (contact 

lenses only because of technical limitations of the eye tracker). Students who met these 

requirements were eligible to participant in this study. Written informed consent was obtained 

from all participants prior to their participation (Appendix A). Data collection began after 

approval from ODU’s Institutional Review Board. 
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CHAPTER 5 

RESULTS 

Prior to any statistical analyses the data were inspected to ensure that the three 

assumptions of ANOVA were met: independence, normality, and homogeneity. Any data found 

to exceed a z-score of 1.645 SD from the mean were classified as extreme values, or outliers, and 

were Winsorized and analyzed to define their influence (Ghosh & Vogt, 2012). To Winsorize 

extreme values the smallest and largest data points were replaced with the nearest data point 

towards the mean in an effort to meet the assumption of normality and test the intended 

population (Ghosh & Vogt, 2012). 

Upon inspection of the data the following measures needed to be Winsorized: 

• Two data points from the manual control condition, where theta-wave activity was 

measured. 

• Two data points from the manual control condition, where alpha-wave activity was 

measured. 

• One data point from the hybrid control condition, where alpha-wave activity was 

measured. 

• One data point from the hybrid control condition, where theta-wave activity was 

measured.  

• One data point from the eye-only control condition, where alpha-wave activity was 

measured.  

During inspection of the data, one participant was found to have missing data, and one 

additional participant’s data was determined to be unreliable due to an error made in procedures 

of EEG setup. Therefore, subsequent data analysis was completed by replacing the two cases in 
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question with the group mean of interest. It was found that the inclusion of the two cases did not 

influence the statistical findings and conclusion of this experiment.  

Prior to analysis the data were inspected to ensure all statistical assumptions of ANOVA 

were met (e.g., normality, independence, and homogeneity). For this study critical alpha was set 

at p < .05 based on the an acceptable probability of committing Type I and Type II errors; which 

is that there will be a 95% chance that the results obtained are replicable, and a 5% chance that 

the results are not replicable. Descriptive statistics were calculated for the dependent measures 

(see Table 1). 

 

Table 1. 
Descriptive Statistics of Dependent Variables. 
 

Source 
Condition 

Mean (SE) 
 

N 
 

Target Detection 
Accuracy Score 

 

  

Manual 10.28 (.51) 18 
   

Hybrid 11.06 (.392) 18 
   

Eyes-only 9.78 (.527) 18 
Avg. Alpha 

Wave Activity 
 

  

Manual 14.40 (1.45) 18 
   

Hybrid 13.46 (1.05) 18 
   

Eyes-only 13.12 (.96) 18 
Avg. Theta 

Wave Activity 
  

   
Manual 18.15 (.99) 18 

   
Hybrid 16.33 (.85) 18 
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Table 1 Continued 
 

 

Eyes-only 15.95 (.93) 18 
Mental Workload 

(TLX) 
  

   
Manual 46.83 (5.43) 18 

   
Hybrid 64.28 (5.26) 18 

   
Eyes-only 60.56 (5.70) 18 

Effort (TLX)   
   

Manual 58.56 (6.40) 18 
   

Hybrid 63.11 (4.56) 18 
   

Eyes-only 53.78 (5.62) 18 
Frustration (TLX)   

   
Manual 22.67 (5.13) 18 

   
Hybrid 42.33 (7.78) 18 

   
Eyes-Only 42.56 (6.78) 18 

 

 

TLX Mental Workload subscale 

 To test the first hypothesis, that there would be a significant difference in TLX Mental 

Demand workload subscale score between the 3 control conditions, a one-way within-subjects 

ANOVA was conducted. The analysis did support the hypothesis as a significant difference was 

found F(2,34) = 8.66, p = .001, partial η2 = .337. However the post hoc analysis revealed that the 

data did not support the direction of the hypothesis.  A Bonferroni post hoc test was used for a 

pair-wise comparison to further investigate the differences in Mental Demand scores. As 

suggested by Maxwell and Delaney (2004) the Bonferroni pair-wise comparison is a statistical 

analysis that allows up to three pair-wise comparisons without having to use an alpha correction, 
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(.05/(c)), without violating a family-wise alpha of .05 (Maxwell & Delaney, 2004).  That 

analysis revealed that the Mental Demand scores for the manual control condition (M = 43.83, 

SD = 23.06) were significantly lower than mental workload subscale scores in the hybrid 

condition (M = 64.28, SD = 22.30) p = .003, SE = 4.46 with an alpha level set at .025 (see Figure 

11). 

 

 
Figure 11 Reported Mental Workload Scores sub-scale of NASA-TLX 
 

 

EEG Theta-Wave Activity 

 To test the second hypothesis, that there would be a significant difference in EEG theta-

wave measures among the 3 control conditions, a one-way within-subjects ANOVA was 

conducted. As previously mentioned the data points collected and used in this analysis were 

collected at a sampling rate of 512 per second; and a Butterworth filer was used for artifact 
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filtering for 2 second epochs. The analysis did confirm the hypothesis as a significant difference 

was found F(2,34) = 8.48, p = .001, partial η2 = .333.   

A Bonferroni post hoc test was used for a pair-wise comparison to further investigate the 

differences in the average theta-wave activity. The contrast revealed that the average theta-wave 

activity for the hybrid control condition (M = 16.32, SD = 3.62) was significantly lower than that 

in the manual control condition (M = 18.15, SD = 4.21) p = .01, SE = .512. Also, the average 

theta-wave activity in the eyes-only control condition (M = 15.95, SD = 3.95) was significantly 

lower than the manual control condition, p = .01, SE = .658. These findings would suggest that 

both the hybrid and eyes-only control conditions require significantly less cognitive resources 

than the manual control condition (see Figure 12). 

 

 
Figure 12 Recorded Average Theta-wave Activity 
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EEG Alpha-Wave Activity 

 To test the third hypothesis, that there would be a significant difference in EEG alpha-

wave measures among the 3 control conditions, a one-way within-subjects ANOVA was 

conducted. The analysis did not support the hypothesis as no significant differences in average 

alpha-wave activity were found F(2,34) = 2.27, p = .12, partial η2 = .118.   

Performance Score, SA Measure 

 To test the fourth hypothesis, that there would be a significant difference in SA, as 

reflected by performance score measures, among the 3 control conditions a one-way within-

subjects ANOVA was conducted. Although the analysis did not support the hypothesis, a 

significant difference in performance scores was found F(2,34) = 3.94, p = .03, partial η2 = .188.   

The Bonferroni post hoc test revealed that performance scores, number of targets 

identified, for the hybrid control condition (M = 11.06, SD = 1.66) were significantly higher than 

the performance scores of the eyes-only (M = 9.78, SD = 2.24) p = .05, SE = .477. However 

contrary to prediction the contrast also revealed that the performance scores in the hybrid control 

condition were not significantly different than the performance scores in the manual control 

condition (M = 10.28, SD = 2.16) p = .33, SE = .461. 
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Figure 13 Target Detection Accuracy Score out of 14 targets 

 

Correlates 

 To test the fifth hypothesis multiple one-tailed Pearson’s r tests were conducted to 

analyze the relationship between reported mental workload, TLX, scores and average theta wave 

activity. However, the correlations did not reveal any significant relationships among variables 

across the three control conditions: (mental workload and average theta wave activity in manual 

control condition) r = .17, (mental workload and avg. theta wave activity in hybrid control 

condition) r = -.07, and (mental workload and avg. theta wave activity in eyes-only control 

condition) r = .06.  
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Additional correlational analyses were conducted to evaluate any possible relationships 

between the following variables: age, sex, video game experience, computer experience, and 

performance measures, no significant correlations were found.  

Post hoc Analysis 

To further interpret the collected data two additional post hoc analyses were conducted. A 

one-way within-subjects ANOVA was conducted to evaluate the scores on the Effort subscale of 

the TLX, among the three control method conditions. The analysis did not reveal any significant 

differences between Effort scores F (2,34) = 1.17, partial η2 = .064.  

An additional one-way, within-subjects ANOVA was conducted to evaluate the reported 

NASA-TLX Frustration scores among the three control conditions. The analysis revealed a 

significant difference in reported Frustration scores F (2,34) = 4.51, p = .02, partial η2 = .21. A 

post hoc pair-wise comparison was conducted to further examine the one-way within-subjects 

ANOVA. The contrast revealed that Frustration scores were significantly lower in the manual 

control condition (M = 22.67, SD = 21.80) than the hybrid condition (M = 42.33, SD = 33.01) p 

= .04, SE = 7.15. However the pair-wise comparison did not find a significant difference between 

the frustration scores from the manual control condition and the eyes-only condition (M = 42.56, 

SD = 28.79) p = .08. See Figure 13. 
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Figure 14 Reported Frustration Scores subscale of NASA-TLX 

 

 

 

 

 

 

 

 

 

 

 

0

10

20

30

40

50

60

Manual Hybrid Eyes-only

Av
er

ag
e 

Fr
us

tr
at

io
n 

Sc
or

e 
su

b-
sc

al
e 

of
 th

e 
T

L
X

 

Control Condition 

Average Frustration Score Sub-scale (TLX) Score 



www.manaraa.com

41 
 

CHAPTER 6 

DISCUSSION 

The findings of this research highlight the need for system designers to use an appropriate 

cognitive model when considering interface design, control methods, and possible effects of 

system design.  The aim of this work was to reduce the amount of Extraneous Cognitive Load 

(ECL) imposed upon an operator with the intent that the mental resources would be allocated 

towards other tasks (e.g., visual search task and navigation tasks) (Brünken et al., 2003; Endsely, 

1995a). The results from this study provide evidence that the manipulation in control method did 

support a significant reduction in mental workload as measured by EEG measures. However, the 

results do not provide evidence that the residual mental resources were reallocated towards the 

visual search task or the navigation task. The results provide evidence that the use of eye-

tracking as a control method significantly increases the perceived mental workload of the 

operators. This significant increase is reflected by the reported TLX mental workload sub-scale 

scores, where the manual control condition was reported to require significantly less mental 

workload than either the hybrid or eyes-only control conditions.  

This study provides an example of why researchers should, when possible, consider using 

multiple methods to measure mental workload. This study revealed conflicting results between 

the two workload measures, TLX and EEG, which may not have been found without using 

different measurement techniques for mental workload. If the two measurement techniques were 

not used then there would be a significant change in interpretation of the findings from this 

study.  

The significant reduction in mental workload, as measured by EEG, was predicted by 

Endsley’s (1988a) Mechanisms of Situation Awareness model and Oviatt’s (2006). Oviatt (2006) 
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suggests the use of user-centered designs to reduce ECL and Endsley (1988a) emphasizes the 

importance of mental models and the costs of an operator having an incomplete mental model. 

In the current study operators’ mental models of motor movements and scripts were 

likely incomplete because of the novel nature of the hybrid control interface. A reduction in 

motor movements offered by the hybrid control condition resulted from the use of eye-tracking 

technology, which was reflected by the EEG. There was also a reduction in conventional (e.g., 

proprioceptive, kinesthetic, tactile, and force) feedback given to the operator through motor 

movements. In contrast, during the manual control conditions the operator received conventional 

motor and sensory feedback. During the hybrid control condition most of the conventional 

feedback was lacking. Therefore, compared to the hybrid control condition the feedback 

operators received in the manual control condition more closely resembled pre-existing models 

already held in their Long Term Memory (LTM) that could be facilitated by an increase in 

activation information retrieval.  

The benefit for system designers to rely on an appropriate cognitive model to predict, or 

consider, possible effects of design is evident from the perceived mental workload scores. 

Endsley (1995a) does emphasize the importance of operators developing the correct mental 

model through learned scripts. Endsley describes that such mental models and schemas are 

developed over time, with training, and repeated exposure to situations. She suggests that as 

operators create mental models a bias occurs, which during task execution facilitates early 

schema, or model, recognition (Endsley, 1995a). Interestingly Endsley (1995a) even cautions 

about the potential negative influence of perceived system complexity and how the extent of the 

operator’s knowledge about the system (e.g., how the system inputs and outputs are designed) 

may influence their mental workload and situation awareness. Wickens (1984) supports 
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Endsley’s claim regarding the importance of operators having the correct mental model for a 

given situation, or task. He describes that if an operator does not have a mental model for the 

given situation then one must be generated, which would pose a heavy load on the operator’s 

working memory (Wickens, 1984). The generated heavy load would consist of the operator 

having to consistently maintain and modify a model regarding: the factors involved, rules for 

change, effects for actions, and differences between previous and current (Wickens, 1984).  

The importance of using, and designing, a system that would lessen the load of an 

operator’s working memory and supports the use, or creation, of a mental model is central to 

human factors, and it is believed that this is the cause of the significantly higher perceived 

mental workload scores between the manual control condition and the hybrid control condition 

in this study (Endsley, 1995a; Parasurman et. al., 2000; Still, 2009; Wickens, 1984).  

It is likely that mental workload scores were higher in the hybrid and eye-only control 

conditions because participants held incomplete mental models (Endsley, 1995a; Still, 2009). In 

particular, few participants had ever experienced eye-tracking control technology. Though such 

control may have reduced mental workload, as reflected by EEG measures, it did not feature the 

multimodal feedback that most humans have come to expect from interactions with their 

environment (Keele, 1968). Humans constantly interact with their environment, creating, 

modifying, and strengthening mental models of situations and motor movements (Adams, 1987). 

Ultimately, incomplete mental models of motor movements could have significantly 

influenced the perception of system complexity, as described by Endsley (1995a), and created an 

increase in cognitive workload, as supported by Endsley (1995a) and Wickens (1984). Thus this 

deviation of the hybrid interface from the norm of motor movement feedback clearly explains the 
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significant differences in perceived mental workload and the perceived frustration between the 

manual control condition and the hybrid control condition.  

An additional explanation of the differences in perceived mental workload concerns the 

design of the simulator and the affordances available within the different control conditions. 

Gibson (1979) initially described affordances as emergent potential interactions between actors 

and physical object artifacts (Still & Dark, 2013). Later this description was expanded to include 

mental and environmental influences such as culture, logic, and semantics (Norman, 1988; Still 

& Dark, 2013). One clear reason for an interface designer to consider perceived affordances is to 

help operators recognize potentially available interactions with a system using minimal cognitive 

resources (Still & Dark, 2013). Still (2009) suggested that correctly implemented perceptual 

affordances will create activation in LTM and require less cognitive processing than a culturally 

learned interaction. Still (2009) proposed a decision tree, provided below as Figure 14, that 

designers may utilize to determine the effects of pre-existing affordances and newly created 

affordances. In Figure 14 two modules in the flowchart are circled with a dashed line. It is during 

these two modules that the focus of availability and effects of affordances provided by the 

different designs in control conditions are discussed.  

Still (2009) explains that the “consistent design” module is vital if a designer’s goal is to 

exploit a perceptual affordance. He explains that not only should both the locations and 

interactions of affordances be continuous, but the user must recognize the consistency of design, 

interactions, and constraints. If the user is unable to interpret, or retain, the consistency of a 

system after interacting with it repeatedly, then the design should be reconsidered (Still, 2009). 

In the current study, the affordances available in the manual control condition (e.g., dual 

joysticks for navigation and search) were more naturally available than those in the hybrid 
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control condition. Also, if the users have had little, or no, experience with eye-tracking 

technology then it would be inaccurate to assume that the users would consider eye-tracking 

technology as a perceived affordance. Therefore, Still would support the claim that the manual 

control condition did have more perceptual affordances, perceivable interactions, than either the 

hybrid or eyes-only conditions. Therefore, users’ perceived mental workload should have been 

lower in the manual control condition than in the other conditions Still’s suggestion is strongly 

supported by the findings of this study. The manual control condition was found to require 

significantly less perceived mental workload than the other two novel control conditions.  

 The “effortless” component of the model in Figure 11 is in reference to the inquiry of 

asking if enough practice sessions have been completed for an interaction to become a perceptual 

affordance (e.g., an interpretable interaction that is identified through direct perception) (Still, 

2009). Still suggests that, depending on the stimuli, if a sufficient amount of practice sessions 

have occurred and the user is not effortlessly interacting with the intended perceptual affordance 

then the practice sessions should cease and the design should be reconsidered (Still, 2009). With 

the suggestions of Still (2009) in mind, perhaps users’ perceived less mental workload in the 

manual control condition because the manual control condition required significantly fewer 

practice sessions for the perceptual affordance to become effortless. This would also make sense 

and explain the difference in results of the perceived mental workload across the three conditions 

as reflected both sub-scales of the TLX perceived mental workload and frustration.  
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Figure 15. Evaluation of user and design interactions within the context of automatic and 
controlled processing (Still & Dark, 2013).  
 

 

Conclusion 

This study explored the use of using eye-tracking technology within two compared 

control methods during a visual search task.  This study also provided implications about how 

the use of natural interfaces may not be as predictable as demonstrated in this study. This study 

gives designers a suggestion when considering system designs. That is unless the operators of a 

system are perceptually receptive towards the design they will may not interpret, or perceive, 

specific design features as an advantage or as requiring less mental workload. Moreover this 

study provided a great example of why it is imperative that, when possible, the correct dependent 

measures are used in an effort to explain both results and functional control. The results of this 

 

 



www.manaraa.com

47 
 

study revealed that although the use of eye-tracking technology as a control method did 

significantly reduce operators’ mental workload, as implicated by the EEG theta-wave data, 

however it did not reduce the operator’s perceived mental workload, as implicated by the Mental 

Demand sub-scale of the NASA-TLX. Additionally, the use of a performance measure as a 

measure of global SA did seem to have some interpretability, but was most likely underpowered 

in this study. 

Future studies analyzing the use of eye-tracking technology during tele-operation should 

investigate both the effects of using novel technologies and the time requirement needed for an 

operator to be able to take advantage of residual resources that may be available as a result of a 

change in system design (Endsley, 1995b).  Moreover there should be some research to expand 

upon Hicks and colleagues (2015), and this study, to investigate how novel technology (e.g. eye-

tracking) effects behavioral changes (e.g., time to visually scan, number of stops to scan/search 

for targets) and may influence mental resources (e.g. fatigue, attention, sustained attention) over 

time. An appropriate follow-up to this study would be an extension of the simulated environment 

to evaluate sustained attention, and perhaps an additional task to measure any residual resources 

that may be available while completing the visual search task.  

An additional direction for future research should be to investigate the resilience of an 

intended operator who may be using a novel technology; and how that operator may be affected 

if they required to revert to a conventional technology. Resilience being defined by Woods 

(2006) as “how well can a system handle disruptions and variations that fall outside of the base 

mechanisms/model for being adaptive as defined in that system.” It is imperative that even 

though a system designer may have strong evidence to support the use of a novel technology, 

that the researchers explore and attempt to understand how the operators will respond if that 
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novel technology is not readily available to them, or how the novel technology may assist the 

operator when interacting with a permutation that is not within +/- 1 SD of the mean in a normal 

distribution. As new technology emerges and novel methods are introduced to different 

operational environments it will be vital to any mission or task, to investigate: how novel 

technology can be used, why should novel technology should be used, and most importantly 

should this novel technology be used. As research communities investigate these topics, changes 

in equipment, systems, and procedures will be strongly supported that should benefit both the 

operator’s well-being, and mission/task objectives.  

Limitations 

This experiment did incorporate some limitations regarding interpretability and validity. 

The general interpretation of the results is dependent upon the variables of interest and the 

metrics chosen. For example, the most popular subjective measure of workload has been the 

NASA-TLX.  However, researchers have at times questioned the validity of that measure.  

Realizing this, other measures of workload were also employed; however, readers should 

consider the NASA-TLX findings with caution (De Winter, 2014). Moreover, this study only 

used one objective measure of workload: EEG power-bands.  Though there is a history of the 

theta-wave energy fluctuations being related to the consumption of attentional resources (e.g., 

Antonenko et al, 2010; Brookings et al., 1996) those fluctuations were not found to be 

significantly related to the subjective measure used in this study.  

In terms of validity the intent of this study was to evaluate the differences in using a 

novel technology compared to a conventional technology. However given that the population 

tested was college students who had little, or no, experience in teleoperation control, it could be 

argued that this study was studying early stages of learning for both control methods. Future 
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researchers are encouraged to conduct experiments to further investigate objective teleoperation 

data or to employ subjective measures administered at pre-determined intervals.  
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APPENDIX A 

PHYSICAL DESCRIPTION OF SIMULATOR 

 

(Papelis, Yiannis E., Watson, Ginger S., & Hicks, Kathryn. (2015, March 31-April 2). MODSIM 
World 2015. Analyzing Eye-Tracking Effectiveness With and Without Cursor Feedback During 
On-Screen Button Presses. Proceedings of the MODSIM World 2015 Conference. Virginia 
Beach, VA.) 

 

 A picture of the driving simulator on a high-resolution (1280X1024) computer monitor. 

The simulator included two joysticks and three Smart-eye eye-tracking cameras, one mounted on 

the top of the monitor and two at the bottom. Each camera was calibrated using Smart-eye’s 

calibration program, which calculated the variances between the three cameras to increase the 

accuracy of the eye-trackers. 
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APPENDIX B 

SUBJECTIVE WORKLOAD MEASUREMENT METHOD 

*This is a pen/pencil version of the NASA-TLX that will be used. In the experiment an 

electronic version will be used (Sharek, D. (2009). NASA-TLX Online Tool (Version 0.06) 

[Internet Application]. Research Triangle, NC.). *This Scale will be administered after each 

experimental session. 
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APPENDIX C 
 

INFORMED CONSENT FORM 
 
 
INFORMED CONSENT DOCUMENT  
The purposes of this form are to give you information that may affect your decision whether to 
say YES or NO to participation in this research, and to record the consent of those who say YES.  
 
TITLE OF RESEARCH: Eye-Tracking as a Control Interface for Tele-operation During a 
Visual Search Task 
 
RESEARCHERS:   
James P. Bliss, Ph.D., Professor, Responsible Project Investigator, College of Sciences, 
Psychology Department 
Jeffrey N. Levy, Graduate Student, College of Sciences, Psychology Department 
Samantha Jennings, Undergraduate Student, College of Sciences, Psychology Department  
 
DESCRIPTION OF RESEARCH STUDY: 
  Throughout the past two decades the use of Unmanned Ariel Vehicles (UAVs) and 
Unmanned Ground Vehicles (UGVs) has been increasing in an effort to conserve resources and 
protect valuable personnel. This increase of use in tele-operating robots has been met with 
research to study how tele-operators are affected by the designs of the systems they are 
controlling. This study evaluates various system designs in an effort to further understand how 
tele-operators perform using different systems and what system designs are suggested to be the 
most appropriate in a visual search task.  

Twenty participants will be tested in this experiment. Those who agree to be tested will 
complete a background information form. Following this, you will be asked to perform several 
familiarization session with different control methods during a visual search task. After training, 
you will be asked to perform the tasks in several experimental sessions in a simulated 
environment, while EEG data is collected. Following each practice session you will be asked to 
tele-operate a search robot in a simulated industrial environment using three different control 
methods. The three control methods to be studied in this experiment consist of a fully manual, a 
hybrid control, and an eyes-only control method. The control method of fully manual consist of 
two joysticks, one for robot orientation and one for camera control. The hybrid control method 
consists of one joystick and eye-tracking, the joystick for robot orientation and eye-tracking for 
camera control. The eyes only control consists of no joysticks and will utilize eye-tracking 
technology only to operator both robot orientation and camera control. The task for this 
experiment is a visual search task where the objective is to identify all targets in the simulated 
environment.  
Upon the completion of the experiment you will then be debriefed and dismissed.  
The entire experiment should almost 2 hours. 
 
You will receive 2 SONA credits for participating in this study. 
 
EXCLUSIONARY CRITERIA:  
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To participate, you must be over the age of 18. You must have normal vision or corrected-to-
normal vision. You must also have normal or corrected-to-normal hearing.  Therefore, if you 
normally wear eyeglasses, contact lenses or hearing aids you will need to wear them to 
participate.  
 
RISKS AND BENEFITS:  
RISKS: If you decide to participate in this study, then you may face a risk of eyestrain similar to 
the eyestrain experienced during normal computer usage.  The researcher tried to reduce these 
risks by limiting the experimental participation time to less than two hours.  And, as with any 
research, there is some possibility that you may be subject to risks that have not yet been 
identified. 
BENEFITS:  There are no direct benefits for participation in this study. However, you may learn 
valuable information about how research is conducted.  
 
COSTS AND PAYMENTS:  
The researchers want your decision about participating in this study to be absolutely voluntary.  
The main benefit to you for participating in this study is the extra credit or course credit points 
that you will earn for your class.  Although they are unable to give you payment for participating 
in this study, if you decide to participate in this study, you will receive 2 Psychology Department 
research credits, which may be applied to course requirements or extra credit in certain 
Psychology courses. Equivalent credits may be obtained in other ways. You do not have to 
participate in this study, or any Psychology Department study, to obtain this credit.   
 
CONFIDENTIALITY: 
Your participation is completely confidential. The researcher will remove all identifiers from the 
information.  The results of this study may be used in reports, presentations, and publications; 
but the researcher will not identify you individually in such publications. 
 
WITHDRAWAL PRIVILEGE:  
It is OK for you to say NO.  Even if you say YES now, you are free to say NO later, and walk 
away or withdraw from the study -- at any time. Your decision will neither affect your 
relationship with Old Dominion University, nor cause a loss of benefits to which you might 
otherwise be entitled.  The researchers reserve the right to withdraw your participation in this 
study, at any time, if they observe potential problems with your continued participation. 
 
COMPENSATION FOR ILLNESS AND INJURY:  
If you agree to participate, then your consent in this document does not waive any of your legal 
rights.  However, in the event of harm, injury, or illness arising from this study, neither Old 
Dominion University nor the researchers are able to give you any money, insurance coverage, 
free medical care, or any other compensation for such injury.  In the event that you suffer injury 
as a result of participation in any research project, you may contact Dr. James P. Bliss at 757-
683-4051, Dr. George Maihafer (IRB Chair) at 757-683-4520, or the ODU Office of Research, 
757-683-3460.  
 
VOLUNTARY CONSENT:  
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By signing this form, you are saying several things.  You are saying that you have read this form 
or have had it read to you, that you are satisfied that you understand this form, the research 
study, and its risks and benefits.  The researchers should have answered any questions you may 
have had about the research.  If you have any questions later on, please contact the researcher at 
the number above.  
 
If at any time you feel pressured to participate, or if you have any questions about your rights or 
this form, then you should call Dr. George Maihafer (IRB Chair) from the Old Dominion 
University Office of Research, 757-683-4520, or the ODU Office of Research, 757-683-3460.  

By signing below, you are telling the researcher YES, that you agree to participate in this study.  
The researcher should give you a copy of this form for your records.  
   
 
------------------------------------ ------------------------------------- ------------------------ 
Participant’s Name  Participant’s Signature  Date 
 
 
------------------------------------ ------------------------------------- ------------------------ 
Investigator’s Name  Investigator’s Signature  Date 
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APPENDIX D 
 

DEMOGRAPHIC FORM 
 
Participant #_____  Date:__________  Time:__________ 
 
The purpose of this questionnaire is to collect background information for participants in 
this experiment. This information will be used strictly for this experiment and for 
research purposes only.  Please complete or circle each item to the best of your 
knowledge.  
 
1.  Age _________       
 
2.  Male 

Female 
  
3.  Have you ever been diagnosed as color blind or color deficient? ________ 
 
 0 = No 
 1 = Yes 
4.  Have you ever been diagnosed as having hearing loss?________ 
 
 0 = No 
 1 = Yes 
5. If yes, do you have correction with you (i.e. hearing aid)?_______ 
 
 0=No 
 1=Yes 
6.  Have you ever been diagnosed as being nearsighted (myopic)? _______ 
 
 0=No 
 1=Yes 
 
7.  Have you ever been diagnosed as being farsighted (hyperopic)?_______ 
 

0=No 
1=Yes 

 
8.  If you answered yes to either #6 or #7, do you have correction with you (i.e. glasses, 
contact lenses, etc.)? _______ 
  
 0=No 
 1=Yes 
 
9. How many hours per week do you play video/simulation games? _______ 
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10. How many hours per week do you use a computer (work and recreation 
combined)?______ 
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APPENDIX E 
 

INSTRUCTION SHEET 
 

Welcome to project V-Teleoperation, please put away your cell phone and turn it on 
silent. 
 

Greetings and thank you for participant in this experiment. In this experiment you 
will be asked to tele-operate a search robot using three different control methods. The 
control methods used in the experiment will be chosen at random and will consist of the 
following: 

1) Full manual  
2) Hybrid 
3) Eyes-only 
 
Prior to the start of the experiment the experimenter will ask you to be fitted for a 

full-scalp EEG cap. This cap will allow the experimenter to monitor and record your 
brainwaves during the experiment. A non-toxic, water-based, electrode gel may be used 
to ensure proper conductivity. If proper conductivity can be obtained without such gel 
then no gel will be used.  

Once the method of control has been established there will be several practice 
sessions that you will be allowed to practice until you feel that you are comfortable using 
the control method. These practice sessions will occur prior to each session, prior to the 
use of a different control method.  
 
The Scenario 
 In this scenario you are a safety inspector for a government agency. You have 
been called to Refinery-A, a chemical plant, to investigate an emergency report 
concerning dangerous chemicals that are leaking out of barrels. You have arrived to the 
site where you find that the plant has been evacuated until all the damaged barrels, 
targets, are identified. It is your job to use your search robot to safely search and identify 
all damaged barrels throughout the plant.  
 
The Task 

Your tasks while operating the search robot are to navigate and search the 
Simulated Environment (SE) and identify specific targets in the SE. The targets that are 
to be identified in this simulation are damaged industrial barrels (e.g. the barrel in figure 
1 is not damaged barrel). More examples of target and non-targets barrels will be 
demonstrated during the practice sessions. The path that is to be navigated is displayed as 
a darkened chemical-stained trail, as seen below in figure 1. This path will be more 
clearly displayed in the practice sessions.  
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Figure 15. Screen shot of operator’s view during tele-operation (Hicks et al., 2015). 
 

 
 
Figure 16. Screen shot of operator’s viewpoint while using the eyes-only control method 
(Hicks et al., 2015). 
 
Selection Methods and Displays 
 As previously mentioned there are three methods of control that you will be asked 
to test. During the Full manual and Hybrid method of control your display will be as 
shown in Figure 1, and for the third method of control, eyes-only, your display will be as 
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shown in figure 2. In both figures there is a small display of your search robot in the 
bottom right. This display will be in same location during the experiment and will 
accurately represent the orientation of your robot as well as your camera. The large 
rectangular portion of the robot in the bottom right of your screen represents your robot’s 
orientation and the long narrow rectangle shape that is whitened represents your camera’s 
orientation. This small display may be used to assist in the navigation of the simulated 
environment as well as assist in the scanning of the environment.  
 
 During the operation of the search robot two of the three methods will have 
the same method of selection, while the third will differ.  
 
Fully Manual selection 

During the Fully manual control method you will control the robot movement 
with one hand, and cameral movement with the opposite hand. While searching the 
environment with your camera if you think you have found a target and would like to 
select the target the first step is to pull and hold the trigger on the camera joystick. Once 
the trigger is held the camera movement will be disabled and a reticle, a circle with 
crosshairs in it, will appear on the screen. You will be able to manipulate the movement 
of the reticle to the intended target using the camera joystick. When the reticle is on the 
intended target you can press the second button on the joystick, located on the top of it, 
and the target will be marked and logged as being identified. When you would like to 
continue your search simply release the trigger on the camera joystick and continue with 
your tasks.  
 
You will be given several practice sessions until you feel you are comfortable using this 
control method.  
 
*This paragraph will be repeated during the practice sessions prior to the use of this 
control method.  
 
Hybrid and Eyes-only selection 

During both Hybrid and Eyes-only control methods you will control the cameral 
movement with your eyes. While searching the environment with your camera if you 
think you have found a target and would like to select the target the first step is to 
carefully focus on the intended target. This may be easier if you choose a specific point 
on the target and focus your gaze upon it. This selection method uses time of duration to 
indicate your intention of target selection. After a few seconds a target selection symbol 
will appear on the screen as shown in figure 3. This symbol will appear and begin as long 
as your gaze in focused on a single target. Once the selection symbol has reached a full 
circle you may nod your head to finalize your selection. This gesture, head nod, will 
allow the target to be marked and logged as being identified. If for some reason you do 
not want to select the target simply move your eyes away from the non-target and the 
selection symbol will disappear.  
When you would like to continue your search simply continue using your eyes continue 
with your tasks.  
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You will be given several practice sessions until you feel you are comfortable using this 
control method.  
 
*This paragraph will be repeated during the practice sessions prior to the use of this 
control method.  
 

 
Figure 3. Display of selection method during eye-only control method.  
 
 
At this point in the experiment do you have any questions regarding the task or the 
operations of the equipment? 
 
If there no more questions then let us begin the experiment. 
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APPENDIX F 
 

SONA RECRUITMENT ADVERTISEMENT 
 

Eye Tracking as a Control Interface for Tele-operation During a Visual Search 
Task 

 
James P. Bliss, Jeffrey N. Levy, and Samantha Jennings of the ODU Psychology 
Department are currently conducting an experiment.   
 
Brief research overview: The purpose of this research is to investigate different control 
methods during the tele-operation of search robots.  
 
Research overview  
  

Twenty participants will be tested in this experiment. Those who agree to be 
tested will complete a background information form. Following this, you will be asked to 
perform several familiarization session with different control methods during a visual 
search task. After training, you will be asked to perform the tasks in several experimental 
sessions in a simulated environment, while EEG data are collected. Following each 
practice session you will be asked to tele-operate a search robot in a simulated industrial 
environment using three different control methods. The three control methods to be 
studied in this experiment consist of a fully manual, a hybrid control, and an eyes-only 
control method. The control method of fully manual consist of two joysticks, one for 
robot orientation and one for camera control. The hybrid control method consists of one 
joystick and eye-tracking, the joystick for robot orientation and eye-tracking for camera 
control. The eyes only control consists of no joysticks and will utilize eye-tracking 
technology only to operator both robot orientation and camera control. The task for this 
experiment is a visual search task where the objective is to identify all targets in the 
simulated environment.  
 
When the three sessions are completed you will then be debriefed and dismissed. The 
entire experiment should last almost 2 hours. 
 
You will receive 2 SONA credits for participating in this study. 
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